Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography.

نویسندگان

  • Barry Cense
  • Teresa C Chen
  • B Hyle Park
  • Mark C Pierce
  • Johannes F de Boer
چکیده

To our knowledge, this is the first demonstration of in vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer (RNFL) by use of polarization-sensitive optical coherence tomography (PS-OCT). Because glaucoma causes nerve fiber layer damage, which may cause loss of retinal birefringence, PS-OCT is a potentially useful technique for the early detection of glaucoma. We built a fiber-based PS-OCT setup that produces quasi-real-time images of the human retina in vivo . Preliminary measurements of a healthy volunteer showed that the double-pass phase retardation per unit depth of the RNFL near the optic nerve head is 39+/-6( degrees )/100microm .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera.

Polarization-sensitive optical coherence tomography can be used to measure the birefringence of biological tissue such as the human retina. Previous measurements with a time-domain polarization-sensitive optical coherence tomography system revealed that the birefringence of the human retinal nerve fiber layer is not constant, but varies as a function of location around the optic nerve head. Her...

متن کامل

Birefringence measurement of the retinal nerve fiber layer by swept source polarization sensitive optical coherence tomography

A Swept Source Polarization-Sensitive Optical Coherence Tomography (SS-PS-OCT) instrument has been designed, constructed, and verified to provide high sensitivity depth-resolved birefringence and phase retardation measurements of the retinal nerve fiber layer. The swept-source laser had a center wavelength of 1059 nm, a full-width-half-max spectral bandwidth of 58 nm and an A-line scan rate of ...

متن کامل

Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography.

Conventional polarization-sensitive optical coherence tomography (PS-OCT) can provide depth-resolved Stokes parameter measurements of light reflected from turbid media. A new algorithm that takes into account changes in the optical axis is introduced to provide depth-resolved birefringence and differential optical axis orientation images by use of fiber-based PS-OCT. Quaternion, a convenient ma...

متن کامل

Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination.

Accurate wavelength assignment of each spectral element for spectral-domain optical coherence tomography (SD-OCT) and optical frequency domain imaging (OFDI) is required for proper construction of biological tissue cross-sectional images. This becomes more critical for functional extensions of these techniques, especially in polarization-sensitive optical coherence tomography (PS-OCT), where in...

متن کامل

Retinal polarization-sensitive optical coherence tomography at 1060 nm with 350 kHz A-scan rate using an Fourier domain mode locked laser.

We present a novel, high-speed, polarization-sensitive, optical coherence tomography set-up for retinal imaging operating at a central wavelength of 1060 nm which was tested for in vivo imaging in healthy human volunteers. We use the system in combination with a Fourier domain mode locked laser with active spectral shaping which enables the use of forward and backward sweep in order to double t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics letters

دوره 27 18  شماره 

صفحات  -

تاریخ انتشار 2002